An Eulerian Finite Element Method for Elliptic Equations on Moving Surfaces

نویسندگان

  • MAXIM A. OLSHANSKII
  • ARNOLD REUSKEN
چکیده

In this paper a new finite element approach for the discretization of elliptic partial differential equations on surfaces is treated. The main idea is to use finite element spaces that are induced by triangulations of an “outer” domain to discretize the partial differential equation on the surface. The method is particularly suitable for problems in which there is a coupling with a flow problem in an outer domain that contains the surface, for example, two-phase incompressible flow problems. We give an analysis that shows that the method has optimal order of convergence both in the H1 and in the L2-norm. Results of numerical experiments are included that confirm this optimality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eulerian finite element method for parabolic PDEs on implicit surfaces

We define an Eulerian level set method for parabolic partial differential equations on a stationary hypersurface Γ contained in a domain Ω ⊂ Rn+1. The method is based on formulating the partial differential equations on all level surfaces of a prescribed function Φ whose zero level set is Γ . Eulerian surface gradients are formulated by using a projection of the gradient in Rn+1 onto the level ...

متن کامل

An Eulerian level set method for partial differential equations on evolving surfaces

In this article we define an Eulerian level set method for a partial differential equation on an evolving hypersurface Γ (t) contained in a domain Ω ⊂ R. The key idea is based on formulating the partial differential equations on all level set surfaces of a prescribed time dependent function Φ whose zero level set is Γ (t). The resulting equation is then solved in one dimension higher but can be...

متن کامل

Dynamic Fracture Analysis Using an Uncoupled Arbitrary Lagrangian Eulerian Finite Element Formulation

This paper deals with the implementation of an efficient Arbitrary Lagrangian Eulerian (ALE) formulation for the three dimensional finite element modeling of mode I self-similar dynamic fracture process. Contrary to the remeshing technique, the presented algorithm can continuously advance the crack with the one mesh topology. The uncoupled approach is employed to treat the equations. So, each t...

متن کامل

A Moving Mesh Finite Element Method for the Shallow Water Equations

In this dissertation a moving mesh method finite element method is used to approximate moving boundary solutions to the shallow water equations. An Arbitrary Lagrangian Eulerian method is applied to an existing finite element scheme. Some exact solutions to the shallow water equations in a parabolic basin are shown for comparison. An investigation is conducted into the accuracy of the method. I...

متن کامل

Eulerian Finite Element Methods for Parabolic Equations on Moving Surfaces

Three new Eulerian finite element methods for parabolic PDEs on a moving surface Γ(t) are presented and compared in numerical experiments. These are space-time Galerkin methods, which are derived from a weak formulation in space and time. The trialand test-spaces contain the traces on the space-time manifold of an outer prismatic finite element space. The numerical experiments show that two of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008